
ShyLU: A Hybrid-Hybrid Solver for Multicore Platforms

Sivasankaran Rajamanickam1, Erik G. Boman1, and Michael A. Heroux1,
E-mail:{srajama@sandia.gov, egboman@sandia.gov and maherou@sandia.gov}

1 Sandia National Laboratories.

Abstract—With the ubiquity of multicore processors, it is
crucial that solvers adapt to the hierarchical structure of
modern architectures. We present ShyLU, a “hybrid-hybrid”
solver for general sparse linear systems that is hybrid in two
ways: First, it combines direct and iterative methods. The
iterative part is based on approximate Schur complements
where we compute the approximate Schur complement using
a value-based dropping strategy or structure-based probing
strategy.

Second, the solver uses two levels of parallelism via hybrid
programming (MPI+threads). ShyLU is useful both in shared-
memory environments and on large parallel computers with
distributed memory. In the latter case, it should be used as a
subdomain solver. We argue that with the increasing complexity
of compute nodes, it is important to exploit multiple levels of
parallelism even within a single compute node.

We show the robustness of ShyLU against other algebraic
preconditioners. ShyLU scales well up to 384 cores for a
given problem size. We also study the MPI-only performance
of ShyLU against a hybrid implementation and conclude
that on present multicore nodes MPI-only implementation is
better. However, for future multicore machines (96 or more
cores) hybrid/ hierarchical algorithms and implementations are
important for sustained performance.

I. INTRODUCTION

The general trend in computer architectures is towards
hierarchical designs with increasing node level parallelism.
In order to scale well in these architectures, applications
need hybrid/hierarchical algorithms for the performance
critical components. The solution of sparse linear systems
is an important kernel in scientific computing. A diverse
set of algorithms is used to solve linear systems, from
direct solvers to iterative solvers. A common strategy for
solving large linear systems on large parallel computers,
is to first employ domain decomposition (e.g., additive
Schwarz) on the matrix to break it into subproblems that
can then be solved in parallel on each core or on each
compute node. Typically, applications run one MPI process
per core, and one subdomain per MPI process. A drawback
of domain decomposition solvers or preconditioners is that
the number of iterations to solve the linear system will
increase with the number of subdomains. With the rapid
increase in the number of cores one subdomain per core is
no longer a viable approach. However, one subdomain per
node is reasonable since the recent and future increases in
parallelism are and will be primarily on the node. Thus, an
increasingly important problem is to solve linear systems

in parallel on the compute node. Our hybrid-hybrid method
is “hybrid” in two ways: the solver combines direct and
iterative algorithms, and uses MPI and threads in a hybrid
programming approach.

In order to be scalable and robust it is important for
solvers and preconditioners to use the hybrid approach in
both meanings of the word. The hybrid programming model
ensures good scalability within the node and the hybrid
algorithm ensures robustness of the solver. A sparse direct
solver is very robust and the BLAS based implementations
are capable of performing near the peak performance of
desktop systems for specific problems. However, they have
high memory requirements and poor scalability in distributed
memory systems. An iterative solver, while highly scalable
and customizable for problem specific parameters, is not
as robust as a direct solver. A hybrid preconditioner can
be conceptually viewed as a middle ground between an
incomplete factorization and a direct solver.

A. ShyLU Scope and Our Contributions

Current iterative solvers and preconditioners (such as
ML [1] or Hypre [2]) need a node level strategy in order
to scale well in large petascale systems where the degree of
parallelism is extremely high. The natural way to overcome
this limitation is to introduce a new level of parallelism in the
solver. We envision three levels of parallelism: At the top,
there is the inter-node parallelism (typically implemented
with MPI) and two levels of parallelism (MPI+threads) on
the node. Section V describes the various options to use
a parallel node level preconditioner with three levels of
parallelism.

The node level is where the degree of parallelism is
rapidly increasing and this is the scope of ShyLU. Previous
Schur/hybrid solvers all solve the global problem, competing
with multigrid. This approach instead complements the
multigrid methods and focuses on the scalability on the node.
In this paper, we concentrate on the node level parallelism
and leave the integration into the third (inter-node) level as
future work.

Our first contribution is a new scalable hybrid sparse
solver, ShyLU (Scalable Hybrid LU, pronounced Shy-Loo),
based on the Schur complement framework. ShyLU is based
on Trilinos [3] and also intended to become a Trilinos
package. It is designed to be a “black box” algebraic solver
that can be used on a wide range of problems. Furthermore,

it is suitable both as a solver on a single-node multicore
workstation and as a subdomain solver on a compute node
of a petaflop system. Our target is computers with many
CPU-like cores, not GPUs.

Second, we revisit every step of the Schur complement
framework to exploit node level parallelism and to improve
the robustness of ShyLU as a preconditioner. ShyLU uses a
new probing technique that exploits recent improvements in
parallel coloring algorithms to get a better approximation of
the Schur complement.

Third, we try to answer the question: “When will the
hybrid implementation of a complex algorithm be better
than a pure MPI-based implementation?”. We use ShyLU as
our target “application” as a complex algorithm like linear
solver, with a pure MPI-based implementation and a hybrid
MPI+Threads implementation should be able to provide a
reasonable answer to this question. The answer is dependent
on algorithms, future changes in architectures, problem sizes
and various other factors. We address this question for our
specific algorithm and our target applications.

B. Previous work

Many good parallel solver libraries have been developed
over the last decades; for example, PETSc [4], Hypre [2],
and Trilinos [3]. These were mainly designed for solving
large distributed systems over many processors. ShyLU’s
focus is on solving medium-sized systems on a single com-
pute node. This may be a subproblem within a larger parallel
context. Some parallel sparse direct solvers (e.g., SuperLU-
MT [5], [6] or Pardiso [7]) have shown good performance
in shared-memory environments, while distributed-memory
solvers (for example MUMPS [8], [9]) have limited scalabil-
ity. Pastix [10] is an interesting sparse direct solver because
it uses hybrid parallel programming with both MPI and
threads. However, any direct solver will require lots of mem-
ory due to fill-in and they are not ready to handle the O(100)
to O(1000) expected increase in the node concurrency (in
their present form at least). To reduce memory requirements,
incomplete factorizations is a natural choice. There are only
few parallel codes available for incomplete factorizations in
modern architectures. (e.g., [11], [12])

Recently, there has been much interest in hybrid solvers
that combine features of both direct and iterative meth-
ods. Typically, they partially factor a matrix using direct
methods and use iterative methods on the remaining Schur
complement. Parallel codes of this type include HIPS [13],
MaPhys [14], and PDSLin [15]. ShyLU is similar to these
solvers in a conceptual way that all these solvers fall into the
broad Schur complement framework described in section II.
This framework is not new, and similar methods were
already described in Saad et al. [16]. However, each of these
solvers, including ShyLU, is different in the choices made
at different steps within the Schur complement framework.
Furthermore, we are not aware of any code that is hybrid

Figure 1. Partitioning and reordering of a (a) nonsymmetric matrix and
(b) symmetric matrix.

in both the mathematical and in the parallel programming
sense. In contrast to the other hybrid solvers our target is a
multicore node. See section IV for how these solvers differ
from ShyLU in the different steps of the Schur complement
framework.

II. SCHUR COMPLEMENT FRAMEWORK

This section describes the framework to solve linear
systems based on the Schur complement approach. There
has been lot of work done in this area; see for example,
Saad [17, Ch.14] and the references therein.

A. Schur complement formulation

Let Ax = b be the system of interest. Suppose A has the
form

A =
(

D C
R G

)
, (1)

where D and G are square and D is non-singular. The Schur
complement after elimination of the top row is S = G−R∗
D−1C. Solving Ax = b then consists of solving(

D C
R G

)
×

(
x1

x2

)
=

(
b1

b2

)
(2)

by solving
1) Dz = b1.
2) Sx2 = b2 −Rz.
3) Dx1 = b1 − Cx2.
The algorithms that use this formulation to solve the

linear system in an iterative method or a hybrid method
essentially use three basic steps. We like to call this the
Schur complement framework:

Partitioning: The key idea is to permute A to get a D that
is easy to factor. Typically, D is diagonal, banded or block
diagonal and can be solved quickly using direct methods.
As the focus is on parallel computing, we choose D to be
block diagonal in our implementation. Then R corresponds
to a set of coupling rows and C is a set of coupling columns.
See Figure 1 for two such partitioning. The symmetric
case in Figure 1(b) is identical to the Schur complement
formulation. The nonsymmetric case in Figure 1(a) can be

solved using the same Schur complement formulation even
though it appears different.

Sparse Approximation of S: Once D is factored (either
exactly or inexactly), the crux of the Schur complement
approach is to solve for S iteratively. There are several
advantages to this approach. First, S is typically much
smaller than A. Second, S is generally better conditioned
than A. However, S is typically dense making it expensive
to compute and store. All algorithms compute a sparse
approximation of S (S̄) either to be used as a preconditioner
for an implicit S or for an inexact solve.

Fast inexact solution with S: Once S̄ is known there are
multiple options to solve S and then to solve for A. For
example, the algorithms can choose to solve D exactly and
just iterate on the Schur complement system (S) using S̄ as a
preconditioner and solve exactly for the full linear system, or
use an incomplete factorization for D and then use iterative
methods for solving both S and A, using an inner-outer
iteration. The options for preconditioners to S vary as well.

Different hybrid solvers choose different options in the
above three steps, but they follow this framework.

B. Hybrid Solver vs. Preconditioner

Hybrid solvers typically solve for D exactly using a sparse
direct solver. This also provides an exact operator for S.
Note that S does not need to be formed explicitly but the
action of S on a vector can be computed by using the identity
S = G−R∗D−1C. This can save significant memory, since
S can be fairly dense.

We take a slightly different perspective: We design an
inexact solver that may be used as a preconditioner for A
where A corresponds to a subdomain problem within a larger
domain decomposition framework. As a preconditioner, we
no longer need to solve for D exactly. Also, we don’t need to
form S exactly. If we solve for S using an iterative method,
we get an inner-outer iteration. The inner iteration is internal
to ShyLU, while the outer iteration is done by the user. When
the inner iteration runs for a variable number of iterations,
it is best to use a flexible Krylov method (e.g., FGMRES)
in the outer iteration.

C. Preconditioner Design

As is usual with preconditioners (see e.g., IFPACK [18]),
we split the preconditioner into three phases: (i) Initialize,
(ii) Compute, and (iii) Solve. Initialize (Algorithm 1) only
depends on the sparsity pattern of A, so may be reused for
a sequence of matrices. Compute (Algorithm 2) recomputes
the numeric factorization and S̄ if any matrix entry has
changed in value. Solve (Algorithm 3) approximately solves
Ax = b for a right-hand side b.

III. NARROW SEPARATORS VS WIDE SEPARATORS

The framework in Section II depends on finding separators
to partition the matrix into the bordered form. The traditional

Algorithm 1 Initialize
Require: A is a square matrix
Require: k is the desired number of parts (blocks)

Partition A into k parts.
Ensure: Let D be block diagonal with k blocks.
Ensure: Let R be the row border and C the column border.

Algorithm 2 Compute
Require: Initialize has been called.

Factor D.
Compute S̄ ≈ G−R ∗D−1C.

way to find this separator is to represent the matrix as
graph or hypergraph and find a partitioning of the graph
or hypergraph. Let (V1, V2, P) be a partition of the vertices
V in a graph G(V,E). P is a separator if there is no edge
(v, w) such that v ∈ V1 and w ∈ V2. Separator P is called
a wide separator if any path from V1 to V2 contains at least
two vertices in P . A separator that is not wide is called a
narrow separator. Note that the edge separator as computed
by many of the partitioning packages corresponds to a wide
vertex separator.

Wide separators were originally used as part of order-
ing techniques for sparse Gaussian elimination [19]. The
intended application at that time was sparse direct factoriza-
tion [20]. We revisit this comparison with respect to hybrid
solvers here.

From the perspective of the graph of the matrix, the
narrow separator is shown in Figure 2(a). The corresponding
wide separator is shown in Figure 2(b). The doubly bordered
block diagonal form of a matrix A when we use a narrow
separator is shown below (for two parts).

Anarrow =

D̂11 0 Ĉ11 Ĉ12

0 D̂22 Ĉ21 Ĉ22

R̂11 R̂12 Ĝ11 Ĝ12

R̂21 R̂22 Ĝ21 Ĝ22

 (3)

All the R̂ij blocks and Ĉij blocks can have nonzeros in
them. As a result, every block in the Schur complement
might require communication when we compute it. For
example, while using the matrix from the narrow separator
Anarrow to compute the Ŝ11 block of the Schur complement
we do

Algorithm 3 Solve
Require: Compute has been called.

Solve Dz = b1.
Solve either Sx2 = b2 −Rz or S̄x2 = b2 −Rz.
Solve Dx1 = b1 − Cx2.

(a) Narrow Separator. (b) Wide Separator.

Figure 2. Wide Separator and Narrow Separator of a graph G.

Ŝ11 = Ĝ11 − R̂11 ∗ D̂−1
1 ∗ Ĉ11 + R̂12 ∗ D̂−1

2 ∗ Ĉ21 (4)

Computing the Schur complement in the above form is
expensive due to the communication involved. However, the
doubly bordered block diagonal form for two parts when
we use a wide separator has more structure to it as shown
below.

Awide =

D11 0 C11 0
0 D22 0 C22

R11 0 G11 G12

0 R22 G21 G22

 (5)

Although this block partition is similar to Equation (3),
the matrix blocks will in general have different sizes since
a wide separator is larger than the corresponding narrow
separator. Consider that rows of Dii are the interior vertices
in part i and the rows in Rij are boundary vertices in part
i then we observe that all blocks Rij and Cij will be equal
to zero when i 6= j. This follows from the definition of the
wide separator.

As R and C are block diagonal matrices, we can compute
the Schur complement without any communication. For
example, to compute the S11 block of the Schur complement
of Awide we do

S11 = G11 −R11 ∗D−1
1 ∗ C11 (6)

Thus computing S in the wide separator case is fully
parallel. The off-diagonal blocks of the Schur complement
are equal to the off-diagonal blocks of G. However, the
wide separator can be as much as two times the size of the
narrow separator. This results in a larger Schur complement
system to be solved when using the wide separator. When the
separator was considered as a serial bottleneck (when they
were originally designed for direct solvers) there was a good
argument to use the narrow separators. However, in hybrid
solvers, we solve the Schur complement system in parallel
as well. As a result, while the bigger Schur complement
system leads to increased solve time, the much faster setup
due to increased parallelism offsets the small increase in
solve time. All the experiments in the rest of this work

use wide separators for increased parallelism. Note that the
Schur complement using the wide separator is similar to the
local Schur complement [17].

The edge separator from graph and hypergraph parti-
tioning gives a wide (vertex) separator by simply taking
the boundary vertices. Although this is a good approach
for most problems, we observed that on problems with a
few dense rows or columns, the narrow separator approach
works better. Therefore, ShyLU also has the option to use
narrow separators. While some partitioners can compute
narrow vertex separators directly, we implemented a simple
heuristic to compute a (narrow) vertex separator from the
edge separator so we can use any partitioner.

IV. IMPLEMENTATION

This section describes the implementation details of
ShyLU for each step of the Schur complement framework.
ShyLU uses an MPI and threads hybrid programming model
even within the node. Notice that in the Schur complement
framework the partitioning and reordering is purely alge-
braic. This reordering exposes one level of data parallelism.
ShyLU uses MPI tasks to solve for each Di and the Schur
complement. A further opportunity for parallelism, is within
the diagonal blocks Di. where a threaded direct solver, for
example, Pardiso [7] or SuperLU-MT [5], [6], is used to
factor each block Di. The assumption here is multithreaded
direct solvers (or potentially incomplete factorizations in
the future) can scale well within a uniform memory access
(UMA) region, where all cores have equal (fast) access to
a shared memory region. Using MPI between UMA regions
mitigates the problems with data placement and non-uniform
memory accesses and also allows us to run across nodes, if
desired.

ShyLU uses the Epetra package in Trilinos with MPI for
the matrix A. When combined with a multithreaded solver
for the subproblems, we have a hybrid MPI-threads solver.
This is a very flexible design that allows us to experiment
with hybrid programming and the trade-offs of MPI vs.
threads. In the one extreme case, the solver could partition
and use MPI for all the cores and use no threads. The
other extreme case is to only use the multithreaded direct

solver. We expect the best performance to lie somewhere in
between. A reasonable choice is to partition for the number
of sockets or UMA regions. We will study this in Section VI.

The framework consists of partitioning, sparse approxi-
mation of the Schur complement, and fast, inexact (or exact)
solution of the Schur complement. The first two steps only
have to be done once in the setup phase.

A. Partitioning

ShyLU uses graph or hypergraph partitioning to find a D
that has a block structure and is suitable for parallel solution.
To exploit locality (on the node), we partition A into k parts,
where k > 1 may be chosen to correspond to number of
cores, sockets, or UMA regions. The partitioning induces
the following block structure:

A =
(

D C
R G

)
, (7)

where D again has a block structure. As shown in Figure 1
there are two cases. In the symmetric case, ShyLU uses
a symmetric permutation PAPT to get a doubly bordered
block form. In this case, D = diag(D1, . . . , Dk) is a block
diagonal matrix, R is a row border, and C is a column
border. In the nonsymmetric case, there is no symmetry to
preserve so we allow nonsymmetric permutations. There-
fore, instead we find PAQ with a singly bordered block
diagonal form (Figure 1(b)). A difficulty here is that the
“diagonal” blocks are rectangular, but we can factor square
submatrices of full rank and form R, the row border after
the factorization. ShyLU can use a direct factorization that
can factor square subblocks of rectangular matrices. There
are no multithreaded direct solvers that can handle this case
now. We focus on the structurally symmetric case here. In
our experiments for unsymmetric matrices, we apply the
permutation in a symmetric manner to form the DBBD form.

Several variations of graph partitioning can be used to ob-
tain block bordered structure. Traditional graph partitioning
attempts to keep the parts of equal size while minimizing
the edge cut. We will consider the edge separator as our sep-
arator. The other hybrid solvers we know (see Section I) use
some form of graph partitioning. Hypergraph partitioning is
a generalization of graph partitioning that is also well suited
for our problem because it can minimize the border size
directly. Also, it naturally handles nonsymmetric problems,
while graph partitioning requires symmetry. ShyLU uses
hypergraph partitioning in both the symmetric and nonsym-
metric cases. ShyLU uses the Zoltan/PHG partitioner [21]
and computes the wide separators and narrow separators
from a distributed matrix.

B. Diagonal block solver

The blocks Di are relatively small and will typically
be solved on a small number of cores, say in one UMA
region. Either exact or incomplete factorization can be used.

We choose to use a sparse direct solver. All the results in
Section VI use Pardiso [7] from Intel MKL, which is a
multithreaded solver. Since the direct solver typically will
run within a single UMA region, it does not need to be
NUMA-aware. ShyLU uses the Amesos package [22] in
Trilinos which is a common interface to multiple direct
solvers. This enables ShyLU to switch between any direct
solver supported by the Amesos package. The other hybrid
solvers mentioned in Section I all use a serial direct solver
in this step.

C. Approximations to the Schur Complement

The exact Schur complement is S = G − R ∗ D−1C.
In general, S can be quite dense and is too expensive to
store. There are two ways around this: First, we can use S
implicitly as an operator without ever forming S. Second,
we can form and store a sparse approximation S̄ ≈ S. As
we will see, both approaches are useful.

The Schur complement itself has a block structure

S =

S11 S12 . . . S1k

S21 S22 . . . S2k

...
...

...
Sk1 Sk2 . . . Skk

 (8)

where it is known that the diagonal blocks Sii are usually
quite dense but the off-diagonal blocks are mostly sparse
[17]. Note that the local Schur complements Sii can be
computed locally by Sii = Gii − Ri ∗ D−1

ii Ci. A popular
choice is therefore to use the local Schur complements as a
block diagonal approximation. As we use wide separators as
discussed above all the fill is in our local Schur complement
and all the offdiagonal blocks have the same sparsity pattern
as the corresponding Gij . To save storage, the local Schur
complements themselves need to be sparsified [23], [15].

We investigate two different ways to form S̄ ≈ S:
Dropping and Probing. Both methods attempt to form a
sparser version of S while preserving the main properties
of S.

1) Dropping (value-based): With dropping we only keep
the largest (in magnitude) entries of S. This is a common
strategy and was also used in HIPS and PDSLin. Symmetric
dropping is used in [24]. When forming S = G−R∗D−1C,
we simply drop entries less than a given threshold. We use a
relative threshold, dropping entries that are smaller relative
to the large entries. Since S can be quite dense, we only form
a few columns at a time and immediately sparsify. Note we
do not drop entries based on U−1C or R∗U−1 where L and
U are the LU factors of D, as in HIPS or PDSLin. Since
our dropping is based on the actual entries in S, we believe
our approximation S̄ is more robust. However, even with
the parallelism at the MPI level, computing local Sii to drop
the entries is itself expensive. Instead of trying to parallelize
the sparse triangular solve to compute the Rii ∗D−1

ii ∗ Cii,
we compute the columns of S in chunks and exploit the

(a) Structure of typical banded probing for S̄, B. (b) Structure of G submatrix. (c) Structure of S̄ = B∪G for ShyLU’s probing.

Figure 3. A sketch of the pattern used for probing in ShyLU.

parallelism available from using the multiple right hand sides
in a sparse triangular solve.

2) Probing (structure-based): Since dropping may be
expensive in some cases, ShyLU can also use probing.
Probing was developed to approximate interfaces in domain
decomposition [25], which is also a Schur complement. In
probing, we select the sparsity pattern of S̄ ≈ S first. Given
a sparsity pattern we probe the Schur complement operator
S for the entries given in the sparsity pattern instead of
computing the entire Schur complement and drop the entries.
It is possible to probe the operator efficiently by coloring the
sparsity pattern of S̄ and computing a set of probing vectors,
V , based on the coloring of S̄. V is a n-by-k matrix where
k is the number of colors and n is the dimension of S. The
number of colors in the coloring problem corresponds to
the number of probing vectors needed. The coloring of the
pattern computes the orthogonal columns in S̄, so we apply
the operator to only the few vectors that are needed.

Finally, we apply S = G − RD−1C as an operator to
the probing vectors V to obtain SV , which then gives us
the numerical values for S̄ in a packed format. We need to
unpack the entries to compute S̄. We refer to Chan et al. [25]
for the probing algorithm.

Generally, the sparser S̄, the fewer the number of probing
vectors needed. Choosing the sparsity pattern of S̄ can be
tricky. For PDE problems where the values in S decay away
from the diagonal, a band matrix is often used [25]. We
show how probing works by using a tridiagonal approxima-
tion of the Schur complement as an example. Coloring the
pattern of a tridiagonal matrix results in three colors. Then
the three probing vectors corresponding to the three colors

are

V =

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
...

...
...

(9)

with Vij = 1 if column i had color j. S ∗ V gives us
the entries corresponding to the tridiagonal of the Schur
complement in a packed format. However, a purely banded
approximation will lose any entries in S (and G) that are
outside the bandwidth. To strengthen our preconditioner, we
include the pattern of G in the probing pattern, which is
simple to do as G is known a priori. To summarize, the
pattern of S̄ in ShyLU’s probing is pattern of B ∪G, where
B is a banded matrix.

Figure 3 shows a sketch of how ShyLU’s probing tech-
nique compares to traditional probing. Figure 3(a) shows
the structure of a typical banded probing assuming we are
looking for a few diagonals. To this structure, our algorithm
also includes the structure of G from the reordered matrix
(Figure 3(b)), for probing. As result the structure for the
probing is as shown in Figure 3(c). The idea behind adding
G to the structure of S̄ is that any entry that is originally
part of G is important in S̄ as well. Experimental results
showed a bandwidth of 5% seems to work well for most
problems.

Probing for a band structure is straight-forward since the
probing vectors are trivial to compute. In our approach, we
need to use graph coloring on the structure of S̄ (which
in our case is B ∪ G) to find the probing vectors. We use
the Prober in Isorropia package of Trilinos which in turn
uses the distributed graph coloring algorithm [26] in Zoltan.
Note that all the steps in probing - the coloring, applying the
probing vector and extracting S̄, are done in parallel. Probing

for a complex structure is computationally expensive, but we
save quite a lot in memory as the storage required for the
Schur complement is the size of G with a few diagonals.
However, for problems where the above discussed structure
of S̄ is not sufficient, the more expensive dropping strategy
can be used.

D. Solving for the Schur Complement

As in the steps before, there are several options for solving
for the Schur complement as well. Recall that we have
formed S̄, a sparse approximation to S. A popular approach
in hybrid methods is to solve the Schur complement system
iteratively using S̄ as a preconditioner. In each iteration, we
have to apply S, which can be done implicitly without ever
forming S explicitly. Note that implicit S requires sparse
triangular solves for D in every iteration. We call this the
exact Schur complement solver.

As we only need an inexact solve as a preconditioner,
it is also possible to solve S̄ instead of solving S. Now,
even S̄ is large enough that it should be solved in parallel.
We solve for S̄ iteratively using yet another approximation
S̃ ≈ S̄ as a preconditioner for S̄. It should be easy to solve
for S̃ in parallel. In practice, S̃ can be quite simple, for
example, diagonal (Jacobi) or block diagonal (block Jacobi).
The main difference from the exact method is that we do
not use the Schur complement operator even for matrix
vector multiplies in the inner iteration. Instead we use S̄.
We call this approach the inexact Schur complement solver.
ShyLU can do both the exact and inexact solve for the
Schur complement. We compare the robustness of both these
approaches in Section VI.

Once the preconditioner (S̄ or S̃) and the operator for
our solve (either an implicit S or S̄) is decided there are
two options for the solver. If D is solved exactly and an
implicit S is the operator it is sufficient to iterate over S
(as in [13]) and not on A. Instead any scheme that uses an
inexact solve for D or an iterative solve on S̄ (instead of
S) or both implies an inner-outer iterative method for the
overall system. as it is required to iterate on A. It is because
of this reason ShyLU uses an inner-outer iteration, where
the inner iteration is only on the Schur complement part.
The inner iteration (over S or S̄) is internal in the solver
and invisible to the user, while the outer iteration (over A)
is controlled by the user. We expect a trade-off between the
inner and outer iterations. That is, if we iterate over S we
need few outer iterations while if we iterate on S̄ we may
need more outer iterations but fewer inner iterations.

By default, we do 30 inner iterations or to an accuracy of
10−10 whichever comes first.

E. Parallelism

Our implementation of the Schur complement framework
is parallel in all three steps. We use Zoltan’s parallel hy-
pergraph partitioning to partition and reorder the problem.

The block diagonal solvers are multithreaded in addition to
the parallelism from the MPI level. We use parallel coloring
from Zoltan to find orthogonal columns in the structure of
S̄ and sparse matrix vector multiplication to do the probing.
The Schur complement solve uses our parallel iterative
solvers for solving for S or S̄ which use a multithreaded
matrix vector multiplication.

V. PARALLEL NODE LEVEL PRECONDITIONING

ShyLU is a hybrid solver designed for the multicore node
and uses MPI and threads even within the node. This is
different from other approaches where MPI + threads model
spans across the entire system, not just the node, and there
is only one MPI processes per node. We see two problems
with one MPI process per node approach:

1) Parts of the applications other than the solver have
fewer MPI processes limiting their scalability.

2) Scaling the multithreaded solvers on the compute
nodes with NUMA accesses is a harder problem.

Instead, we believe one MPI process per socket or UMA
region is a more practical approach for scalability at least
in the near term. ShyLU also decouples the idea that
one subdomain corresponds to one MPI process. An MPI
based subdomain solver like ShyLU allows the subdomain,
in a domain decomposition method, to span several MPI
processes.

Nothing prevents us from using ShyLU across the entire
system as it is based on MPI, however the separator size (and
thus the Schur complement) will grow with the number of
parts. While using a multithreaded solver for the D blocks
limit the size of the Schur complement to a certain extent
(by partitioning for fewer MPI processes) we recommend
using a domain decomposition method with little commu-
nication (e.g., additive Schwarz) at the global level, and
ShyLU on the subdomains. Such a scheme will exploit
three levels of parallelism, where the top level requires
little communication while the lower levels require more
and more communication. In essence, we adapt the solver
algorithm to the machine architecture. We believe this is
a good design for future exascale computers that will be
hierarchical in structure.

The Schur complement framework and the MPI+threads
programming model also allow ShyLU be fully flexible in
terms of how applications use it. We envision ShyLU to be
used by the applications in three different modes:

1) When applications start one MPI process per UMA
region in the near future, a simple MPI Comm Split()
can map all the MPI processes in a node to ShyLU’s
MPI processes. A subdomain will be defined as one
per node.

2) When applications start one MPI process per node,
additive Schwarz will use a threads-only ShyLU.

3) Applications that now run one MPI process per core
remain that way, the additive Schwarz preconditioner

Figure 4. Cross-section of 3D unstructured mesh on an irregular domain.

(which will use ShyLU on subdomains) can define the
subdomains as one per node and transform the matrix
for ShyLU. ShyLU will not be able to use additional
threads in this case.

Thus the MPI+threads programming model in ShyLU’s
design helps make the application migration to the multicore
systems smooth depending on how the applications want to
migrate.

VI. RESULTS

We perform three different set of experiments. First, we
wish to test robustness of ShyLU compared to other common
algebraic preconditioners. Second, we study ShyLU perfor-
mance on multicore platforms, and in particular the trade-off
between MPI-only vs. hybrid models. This study will also
look at performance of ShyLU while doing strong scaling.
Third, we study weak scaling of ShyLU on both 2D and 3D
problems.

A. Experimental setup

We have implemented ShyLU in C++ within the Trili-
nos [3] framework. We leverage several Trilinos packages,
in particular:

1) Epetra for matrix and vector data structures and ker-
nels.

2) Isorropia and Zoltan for matrix partitioning and prob-
ing.

3) AztecOO and Belos for iterative solves (GMRES).
In addition to the Trilinos packages we also use PARDISO

as our multithreaded direct solver. We use two test platforms.
The first is Hopper, a Cray XE6 at NERSC. Hopper has
6392 nodes, each with two twelve-core AMD MagnyCours
processors running at 2.1 GHz. Thus, each node has 24
cores and is a reasonable prototype for future multicore
nodes. Furthermore, the Hopper system is attractive to us

because of its NUMA properties. The 24 cores in a node
are in fact four six-core UMA sets. We use Hopper for
all our strong scaling and weak scaling studies. Our other
test platform is an eight-core (dual-socket quad-core) Linux
workstation that represents current multicore systems. We
use this workstation for our robustness experiments.

All experimental results show the product of inner and
outer iterations that will be seen by the user of ShyLU.
When there are many tunable parameters there are two
ways to do experiments. Either choose the best parameters
for each problem, or always use the same parameters for
a given solver on the entire test set. All the experiments
in this section use solver specific parameters and there is
no tuning for a particular problem, since this is how users
typically use software. For probing we add 5% of diagonals
to the structure of G. For dropping, our relative dropping
threshold is 10−3. We use 30 inner iterations or 10−7 relative
residual whichever comes first and 500 outer iterations or
10−7 relative residual whichever comes first. This is fully
utilized when we use the inexact Schur complement.

B. Robustness

We validate the different methods in ShyLU by com-
paring it to incomplete factorizations and the HIPS [13]
hybrid solver. We use three different variations of ShyLU,
approximations based on dropping and probing with the
exact Schur complement solver and approximations based on
dropping and the inexact Schur complement solver. All three
approaches have tunable parameters that can be difficult
to choose. We used a fixed dropping/probing tolerance in
all our tests. The relative threshold for dropping is 10−3.
Similarly, we tested HIPS preconditioner with fixed settings
same as ShyLU. Our goal is to demonstrate the robustness
of ShyLU compared to one other hybrid solver that is
commonly used today. The tests also include ILU with
one level of fill. The number of iterations of the three
methods should not be compared directly, since the fill and
work differ in the various cases. The methods can be made
comparable by tuning the knobs. However, we have used the
parameters as they are used in our various applications.

We chose nine sparse matrices from a variety of appli-
cation areas, taken from the University of Florida sparse
matrix collection [27]. We added one test matrix from a
Sandia application, TC N 360K. The results are shown in
Table I. We see that the dropping approximation with the
exact Schur complement is the most robust approach among
all the approaches, in the sense it has fewer failures. This has
been observed in the past by others as well. The dropping
with exact Schur complement is better or very close to
HIPS in terms of the number of iterations. Generally, the
drop-tolerance version requires fewer iterations (though not
necessarily less run time) than the probing version.

A dash indicates that GMRES failed to converge to the
desired tolerance within 500 iterations. Note that the circuit

Matrix Name N Symmetry ShyLU Dropping ShyLU Probing ShyLU Dropping HIPS ILU
Exact Schur Exact Schur Inexact Schur

venkat50 62.4K Unsymmetric 12 76 - 8 374
TC N 360K 360K Symmetric 32 82 17 19 203
Pres Poisson 14.8K Symmetric 14 26 14 11 -

FEM 3D thermal2 147K Unsymmetric 3 6 3 3 20
bodyy5 18K Symmetric 3 5 3 3 120

Lourakis bundle1 10K Symmetric 7 18 7 10 26
af shell3 504K Symmetric 50 - 39 29 -

Hamm/bcircuit 68.9K Unsymmetric 6 6 4 42 -
Freescale/transient 178.8K Unsymmetric 88 - - 440 -

Sandia/ASIC 680ks 682K Unsymmetric 4 34 2 2 57

Table I
COMPARISON OF NUMBER OF ITERATIONS OF SHYLU DROPPING AND PROBING WITH EXACT SOLVE, SHYLU DROPPING WITH INEXACT SOLVE, HIPS

AND ILU(1) FOR MATRICES FROM UF COLLECTION. A DASH INDICATES NO CONVERGENCE.

matrices bcircuit and transient are difficult for HIPS, but
ShyLU does well in these matrices. The matrix af shell3
has been called horror matrix in the past for posing difficulty
to preconditioners. Both ShyLU and HIPS could solve this
problem easily. ILU(1) does poorly on all the problems when
compared with the two hybrid preconditioners. However,
that is expected given the fact that ILU(1) uses considerably
less memory and has little information in the preconditioner
itself.

We further observe that the dropping version is more
robust than the probing version, as it solved all 10 test prob-
lems while the probing version failed in 2 out of 10 cases.
The inexact approach, as one would expect, is not as robust
as the exact approach with dropping. However, it converged
faster when it worked. We have also verified that ShyLU
takes less memory than a direct solver UMFPACK [28]. The
amount of memory used by ShyLU depends on the size of
the Schur complement, dropping criterion, and the solver
used for the block diagonals.

C. MPI+threads vs MPI performance
We implemented ShyLU with MPI at the top level. Each

MPI process corresponds to a diagonal block Di. We used
multi-threaded MKL-Pardiso as the solver for the Di blocks.
We wish to study the trade-off between MPI-only and hybrid
models. Our design allows us to run any combination of MPI
processes and threads. Note that when we vary the number of
MPI processes, we also change the number of Di blocks so
the preconditioner changes as well. Thus, what we observe in
the performance is a combined effect of changes in the solver
algorithm and in the programming model (MPI+threads).

Initially, we ran on one node of Hopper (24 cores).
However, the number of cores on a node is increasing
rapidly. We want to predict performance on future multicore
platforms with hundreds of cores. We simulate this by
running ShyLU on several compute nodes. Since we use
MPI even within the node, ShyLU also works across nodes.
We expect future multicore platforms to be hierarchical with
highly non-uniform memory access and running across the
nodes will reasonably simulate future systems. We expect

MPI Processes x Number of Threads in
each node

Nodes 4x6 6x4 12x2 24x1
(Cores)
1 (24) 19.6 (79) 17.9 (91) 11.8 (122) 8.3 (144)
2 (48) 14.6 (115) 12.3 (122) 7.0 (144) 6.9 (196)
4 (96) 8.3 (122) 7.2 (144) 5.3 (196) 6.0 (227)

8 (192) 6.4(176) 5.2(196) 3.9(227) 6.9 (332)

Table II
STRONG SCALING AND HYBRID VS MPI-ONLY PERFORMANCE: SOLVE
TIME IN SECONDS (#ITERATIONS) FOR SHYLU DROPPING METHOD TO

SOLVE A LINEAR SYSTEM OF SIZE 360K.

the performance figures for more than 24 cores to get better.
However, we do not know how much MPI and threads
performance are going to get better. Assuming they improve
at the same rate, we compare the performance of the MPI-
only code with hybrid code to understand the possible
differences in future systems.

For this experiment we used a 3D finite element dis-
cretization of Poisson’s equation on an irregular domain,
shown in Figure 4. The matrix dimension was 360K. We
use the drop-tolerance version of ShyLU for our first set of
tests. For each node with 24 cores, we tested the following
configurations of MPI processes × threads: 4 × 6, 6 × 4,
12 × 2, and 24 × 1. The results for run-time and iterations
are shown in Table II. More than 6 threads per node is not
a recommended configuration for Hopper so those results
are not shown in Table II. The solve time is also shown in
Figure 5(a).

There are several interesting observations. First, we see
that although the number of iterations increase with the
number of MPI processes (going across the rows in Table II),
the run times may actually decrease. On a single node, we
see that the all-MPI version (24x1) is fastest, even though
it uses more iterations.

Second, we see that, as we add more nodes, the run times
decrease much more rapidly for the hybrid configurations.
For example, with four nodes, the 12x2 configuration gives
the fastest solve time. This is good news for hybrid methods

(a) Dropping (b) Probing

Figure 5. Strong Scaling: ShyLU’s dropping and probing methods for a matrix of size 360K. Solve Time shown for MPI tasks x Threads.

MPI Processes x Number of Threads in
each node

Nodes 4x6 6x4 12x2 24x1
(Cores)
1 (24) 17.1 (64) 15.4 (70) 9.4 (83) 8.7 (97)
2 (48) 13.7 (76) 9.7 (83) 6.7 (97) 6.3 (114)
4 (96) 8.8 (98) 6.3 (97) 4.8 (114) 6.9 (148)

8 (192) 5.7 (111) 4.6 (114) 4.5(148) 9.3 (218)

Table III
STRONG SCALING AND HYBRID VS MPI-ONLY PERFORMANCE: SOLVE
TIME IN SECONDS (#ITERATIONS) FOR SHYLU PROBING METHOD TO

SOLVE A LINEAR SYSTEM OF SIZE 360K.

MPI Processes x Number of Threads in
each node

Nodes 6x4 12x2 24x1
(Cores)
2 (48) 25.1(90) 15.0(104) 11.5(115)
4 (96) 13.8(104) 9.2(115) 6.2(130)
8 (192) 9.5(115) 5.7(130) 5.1(139)

16 (384) 5.1(130) 3.2(139) 4.8(177)

Table IV
STRONG SCALING AND HYBRID VS MPI-ONLY PERFORMANCE: SOLVE
TIME IN SECONDS (#ITERATIONS) FOR SHYLU DROPPING METHOD TO

SOLVE A LINEAR SYSTEM OF SIZE 720K.

as they can take advantage of the node level concurrency. We
believe that this is mainly due to the subproblems getting
smaller. We conjecture that using more threads would be
helpful on smaller problem sizes per core.

To understand how the algorithmic choices affect our
strong scaling results we also repeated the experiment with
the same 360Kx360K problem with probing. The time for
the solve is shown in Figure 5(b). The results are almost
identical to the dropping method. The MPI only version
started performing poorly at 96 cores. At 192 cores any
MPI+thread combination beats MPI-only implementation.
However, MPI only is still the best choice at 24 cores.

The number of iterations for this experiment is shown in
Table III. We can see that the number of iterations for the
probing method is better than the dropping method.

To verify our conjecture, that the size of the problem in
each subdomain is important for hybrid performance, we
repeated the experiment, this time with a larger problem
720Kx720K. We did not use the 4x6 configuration as it
was the slowest in our previous experiment. The results are
shown in Table IV. Note that ShyLU scales well up to 384
cores. Furthermore, we see that the crossover point where
MPI+threads beats MPI-only implementation is different for
this larger problem (384 cores). The result can be seen
clearly in Figure 6 where we compare the 12x2 case against
24x1 for both the problems (360K and 720K). When the
problem size per subdomain is about 3500 unknowns the
performance is almost the same for all four cases. As
the problem size per subdomain gets smaller the hybrid
programming model gets better.

A consistent trend in our results is that as the number
of cores increase, and the size of the problems get smaller,
the hybrid (MPI+threads) solver outperforms the MPI-only
based solver.

D. Strong scaling

We can also get strong scaling results by looking at a
column at a time at the Tables II – IV. In the 360K
problem’s dropping case, the 4 × 6 configuration gives a
speedup of 2.3 going from one to four nodes, while the
24×1 only gave a speedup of 1.4. Although the first is quite
decent when one takes the communication across nodes into
account, one should keep in mind that ShyLU was primarily
intended to be a fast solver on a single node. The results are
similar when we go to eight nodes (192 cores). The best
speedup the hybrid model achieved is 3.4 while MPI-only
is able to get a speedup of 1.2 for the dropping method. The
6x4 and 12x2 configurations in the 720K problem size case

Figure 6. Solve time for MPI-only and MPI+threads implementations for
different problem sizes per subdomain.

MPI Processes x Number of Threads in
each node

Nodes 4x6 6x4 12x2 24x1
(Problem Size)

1 (60K) 0.25(10) 0.19(10) 0.35(26) 0.21(11)
2 (120K) 0.31(11) 0.22(10) 0.40(26) 0.61(26)
4 (240K) 0.33(11) 0.67(26) 0.20(12) 0.74(26)
8 (480K) 0.41(11) 0.29(11) 0.60(26) 0.82(26)

Table V
SHYLU (PROBING) WEAK SCALING RESULTS: TIMING IN SECONDS

(#ITERATIONS) FOR 2D FINITE ELEMENT PROBLEM.

(Table IV) achieve a speed up of 4.92 and 4.68 going from
48 to 384 cores. MPI-only implementation gained a speedup
of 2.39 for this case. Overall, ShyLU is able to scale up to
384 cores reasonably well.

One should also note that the MPI+threads approach has
allowed us to reduce the iteration creep that we would
expect to see in many precondtioners as the problem size
and number of processes increase. For example, in Table II,
we can see that the configuration of 8 nodes with 12 MPI
processes and 2 threads in each node and the configuration
of 4 nodes with 24 MPI processes (1 thread in each process)
gives us the same number of iterations – 227. However, the
former is using the two threads for better scalability and
takes only 65% of the time.

E. Weak scaling

We perform weak scaling experiments on both 2D and 3D
problems where we keep the number of degrees of freedom
(matrix rows) per core constant. This is not the intended
use case for ShyLU (as a subdomain solver, strong scaling
is more relevant) but we wish to show that ShyLU also does
reasonably well in this setting.

Our 2D test problem is a finite element discretization
of an elliptic PDE on a structured grid but with random

MPI Processes x Number of Threads in
each node

Nodes 4x6 6x4 12x2 24x1
(Problem Size)

1 (60K) 0.37(17) 0.31(18) 0.20(22) 0.39(27)
2 (120K) 0.48(20) 0.51(26) 0.30(27) 0.50(30)
4 (240K) 0.82(29) 0.49(25) 0.38(28) 0.44(31)
8 (480K) 0.83(29) 0.66(30) 0.44(30) 0.55(32)

Table VI
SHYLU (DROPPING) WEAK SCALING RESULTS: TIMING IN SECONDS

(#ITERATIONS) FOR 2D FINITE ELEMENT PROBLEM.

MPI Processes x Number of Threads in
each node

Nodes 4x6 6x4 12x2 24x1
(Problem)

(Size)
1 (90K) 3.0(47) 2.53(54) 1.76(67) 1.37(73)

2 (180K) 4.55(71) 3.93(80) 2.78(95) 2.41(110)
4 (360K) 8.34(122) 7.25(144) 5.31(196) 6.09(227)
8 (720K) 10.30(103) 9.59(115) 5.78(130) 5.17(139)

Table VII
SHYLU (DROPPING) WEAK SCALING RESULTS: TIMING IN SECONDS

(#ITERATIONS) FOR THE 3D PROBLEM.

coefficients, generated in Matlab by the command
A = gallery(’wathen’,nx,ny). We vary the num-
ber of nodes from one to eight. Again, we designed ShyLU
to be run within a node but we want to demonstrate scaling
beyond 24 cores, so we run our experiments across multiple
nodes.

We see in Tables V– VI that both run time and number of
iterations increase slowly with the number of cores (as we
go down the columns). The dropping version demonstrates a
smooth and predictable behavior, while the probing version
has sudden jumps in number of iterations and time. We
conjecture that this is because the preconditioner is sensitive
to the probing pattern (which is difficult to choose). For
the dropping version, the 12x2 configuration with 12 MPI
processes and 2 threads each per node is consistently the
best.

Our 3D test problem is a finite element discretization of an
elliptic PDE on the unstructured grid show in Figure 4. The
weak scaling results for this problem are shown in Table VII.
We observe that going from 1 to 8 nodes, the number of
iterations roughly doubles while the run time roughly triples.
Although worse than the optimal O(n) scaling that multigrid
methods may be able to achieve, this is much better than the
typical O(n2) operations scaling by general sparse direct
solvers. ShyLU’s intended usage as a subdomain solver
also places more emphasis on strong scaling than weak
scaling, as the problem size per node is not growing as
fast as the node concurrency. We conclude that ShyLU is
a good subdomain solver for problems of moderate size and
scales quite well up to 384 cores. Thus, it can also be used
as a solver/preconditioner in itself on such problems and

platforms.

VII. FUTURE WORK

We plan several improvements in ShyLU. Some of these
deal with combinatorial issues in the solver algorithm, others
are numerical.

First, we wish to further study the partitioning and or-
dering strategy. In concurrent work [29] we explored the
trade-off between load imbalance in the diagonal blocks
and the size of the Schur complement. By allowing more
imbalance in the diagonal blocks, the partitioner can usually
find a smaller block border. We have also observed that
the load balance in the system for the inner solve (S)
may be poor even though the load balance for the outer
problem (A) is good. With current partitioning tools one can
balance the interior vertices but not the work in the sparse
factorization or solve. Furthermore, it is not sufficient to
balance the interior vertices (or factorization work) because
ShyLU would require the boundary vertices to be balanced
as well as that corresponds to the number of triangular
solves and matrix vector multiplies while constructing the
Schur complement. We believe this issue poses a partitioning
problem with multiple constraints and objectives, and cannot
be adequately handled using standard partitioning models.

Second, we intend to extend the code to handle struc-
turally nonsymmetric problems with nonsymmetric permu-
tations. Our current implementation uses symmetric ordering
and partitioning, even for nonsymmetric problems. We can
use the hypergraph partitioning and permutation to singly
bordered block form as shown in Figure 1. However, this
requires a multithreaded direct solver that can handle rect-
angular blocks.

Third, one could study the effect of inexact solves (e.g.,
with incomplete factorizations) on the diagonal blocks (Di).
This will require the iterative solver to iterate on the entire
system, not just the Schur complement. The number of
iterations will likely increase, but both the setup and each
solve on the diagonal blocks will be faster. This variation
would also need less memory.

Fourth, we should test ShyLU on highly ill-conditioned
problems, such as indefinite problems and systems from
vector PDEs. Although ShyLU is robust on the range of
problems we tested here, harder test problems may reveal
the need for some algorithmic adjustments.

Finally, we plan to integrate ShyLU as a subdomain
solver within a parallel domain decomposition framework.
This would comprise a truely hierarchical solver with three
different layers of parallelism in the solver.

We remark that none of these issues are specific to ShyLU
and many also apply to other hybrid solvers. Discussions
with developers of other such solvers have confirmed that
they face similar issues. In particular, we believe research
on the combinatorial problems above may help advance a
whole class of solvers.

VIII. CONCLUSIONS

We have introduced a new hybrid-hybrid solver, ShyLU.
ShyLU is hybrid both in the mathematical sense (direct
and iterative) and in the parallel computing sense (MPI
+ threads). ShyLU is both a robust linear solver and a
flexible framework that allows researchers to experiment
with algorithmic options. We introduced and explored sev-
eral such options: a new probing based Schur complement
approximation vs. the traditional dropping strategy, wide vs.
narrow separators, and exact vs. inexact solves for the Schur
complement system. Performance results show ShyLU can
scale well for up to 384 cores in the hybrid mode.

We also studied the question, that given a complex algo-
rithm, with a MPI-only implementation and hybrid (MPI
+Threads) implementation, for a fixed set of parameters:
Can the hybrid implementation beat the MPI-only imple-
mentation? Empirical results on a 24-core MagnyCours node
show that it is advantageous to run MPI on the node.
This is not surprising since MPI gives good locality and
memory affinity. However, we project that for applications
and algorithms with smaller problem size per domain, MPI-
only works well up to about 48 cores, but for 96 or more
cores hybrid methods are faster. The crossover point where
the hybrid model beats MPI depends on the problem size per
subdomain. We conclude that MPI-only solvers is a good
choice for today’s multicore architectures. However, consid-
ering the fact that the number of cores per node is increasing
steadily and memory architectures are changing to favor
core-to-core data sharing, hybrid (hierarchical) algorithms
and implementations are important for future multicore
architectures. We predict multiple levels of parallelism will
be essential on future exascale computers.

ACKNOWLEDGMENT

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Mar-
tin, for the United States Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-
94AL85000.

The authors thank the Department of Energy’s Office
of Science and the Advanced Scientific Computing Re-
search (ASCR) office for financial support. This research
used resources of the National Energy Research Scientific
Computing Center (NERSC), which is supported by the
Office of Science of the DOE under Contract No. DE-AC02-
05CH11231.

REFERENCES

[1] M. Gee, C. Siefert, J. Hu, R. Tuminaro, and M. Sala, “ML
5.0 smoothed aggregation user’s guide,” Sandia National
Laboratories, Tech. Rep. SAND2006-2649, 2006.

[2] R. D. Falgout and U. M. Yang, “Hypre: A library of high
performance preconditioners,” Lecture Notes in Computer
Science, vol. 2331, pp. 632–??, 2002.

[3] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra,
J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P.
Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist,
R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S.
Stanley, “An overview of the Trilinos project,” ACM Trans.
Math. Softw., vol. 31, no. 3, pp. 397–423, 2005.

[4] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Effi-
cient management of parallelism in object-oriented numerical
software libraries. Birkhauser Boston Inc., 1997, pp. 163–
202.

[5] J. W. Demmel, J. R. Gilbert, and X. S. Li, “An asynchronous
parallel supernodal algorithm for sparse gaussian elimina-
tion,” SIAM J. Matrix Anal. Appl., vol. 20, pp. 915–952, July
1999.

[6] X. S. Li, “An overview of SuperLU: Algorithms, implemen-
tation, and user interface,” ACM Trans. Math. Softw., vol. 31,
pp. 302–325, September 2005.

[7] O. Schenk and K. Gärtner, “Solving unsymmetric sparse
systems of linear equations with PARDISO,” Journal of
Future Generation Computer Systems, vol. 20, no. 3, pp. 475–
487, 2004.

[8] P. Amestoy, I. Duff, J.-Y. L’Excellent, and J. Koster, MUl-
tifrontal Massively Parallel Solver (MUMPS Versions 4.3.1)
Users’ Guide, 2003.

[9] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent,
and J. Koster, “MUMPS home page,” 2003,
http://www.enseeiht.fr/lima/apo/MUMPS.

[10] P. Henon, P. Ramet, and J. Roaman, “PaStiX: A parallel
sparse direct solver based on a static scheduling for mixed
1d/2d block distributions,” in Proceedings of Irregular’2000,
ser. Lecture Notes in Comput. Sci., S. Verlag, Ed., vol. 1800,
2000, pp. 519–525.

[11] D. Hysom and A. Pothen, “A scalable parallel algorithm for
incomplete factorization,” SIAM J. on Sci. Comp., vol. 22,
no. 6, pp. 2194–2215, 2001.

[12] J. I. Aliaga, M. Bollhöfer, A. F. Martı́n, and E. S. Quintana-
Ortı́, “Exploiting thread-level parallelism in the iterative solu-
tion of sparse linear systems,” Parallel Comput., vol. 37, pp.
183–202, March 2011.

[13] J. Gaidamour and P. Henon, “A parallel direct/iterative solver
based on a schur complement approach,” Computational
Science and Engineering, IEEE International Conference on,
vol. 0, pp. 98–105, 2008.

[14] L. Giraud and A. Haidar, “Parallel algebraic hybrid solvers
for large 3d convection-diffusion problems,” Numerical Algo-
rithms, vol. 51, pp. 151–177, 2009.

[15] I. Yamazaki and X. S. Li, “On techniques to improve ro-
bustness and scalability of a parallel hybrid linear solver,”
in Proceedings of the 9th international conference on High
performance computing for computational science, ser. VEC-
PAR’10. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 421–
434.

[16] Y. Saad and M. Sosonkina, “Distributed Schur complement
techniques for general sparse linear systems,” SIAM J. Sci.
Comput, vol. 21, pp. 1337–1356, 1997.

[17] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.
SIAM, 2003.

[18] M. Sala and M. Heroux, “Robust algebraic preconditioners
with IFPACK 3.0,” Sandia National Laboratories, Tech. Rep.
SAND-0662, February 2005.

[19] J. R. Gilbert and E. Zmijewski, “A parallel graph partitioning
algorithm for a message-passing multiprocessor,” Interna-
tional Journal of Parallel Programming, vol. 16, pp. 427–449,
1987.

[20] A. George, M. T. Heath, J. Liu, and E. Ng, “Sparse Cholesky
factorization on a local-memory multiprocessor,” SIAM J. Sci.
Stat. Comput., vol. 9, pp. 327–340, March 1988.

[21] K. Devine, E. Boman, R. Heaphy, R. Bisseling, and
U. Catalyurek, “Parallel hypergraph partitioning for scientific
computing,” in Proc. of 20th International Parallel and Dis-
tributed Processing Symposium (IPDPS’06). IEEE, 2006.

[22] M. Sala, K. S. Stanley, and M. A. Heroux, “On the design of
interfaces to sparse direct solvers,” ACM Trans. Math. Softw.,
vol. 34, pp. 9:1–9:22, March 2008.

[23] L. Giraud, A. Haidar, and Y. Saad, “Sparse approximations
of the schur complement for parallel algebraic hybrid linear
solvers in 3d,” Numerical Mathematics: Theory, Methods and
Applications, vol. 3, no. 3, pp. 276–294, 2010.

[24] E. Agullo, L. Giraud, A. Guermouche, and J. Roman, “Paral-
lel hierarchical hybrid linear solvers for emerging computing
platforms,” Comptes Rendus Mecanique, vol. 339, pp. 96–
103, 2011.

[25] T. F. C. Chan and T. P. Mathew, “The interface probing
technique in domain decomposition,” SIAM J. Matrix Anal.
Appl., vol. 13, pp. 212–238, January 1992.

[26] D. Bozdağ, U. V. Çatalyürek, A. H. Gebremedhin, F. Manne,
E. G. Boman, and F. Özgüner, “Distributed-memory parallel
algorithms for distance-2 coloring and related problems in
derivative computation,” SIAM J. Sci. Comput., vol. 32, pp.
2418–2446, August 2010.

[27] T. A. Davis and Y. Hu, “The Univerity of Florida collection,”
ACM Trans. Math. Software, vol. 38, no. 1, 2011.

[28] T. A. Davis, “Algorithm 832: UMFPACK v4.3—an
unsymmetric-pattern multifrontal method,” ACM Trans. Math.
Softw., vol. 30, pp. 196–199, June 2004.

[29] E. G. Boman and S. Rajamanickam, “A study of combinato-
rial issues in a sparse hybrid solver,” in Proc. of SciDAC’11,
2011.

